
Level 2

TM

Learn Grow Have Fun Succeed!

Video Game Design
and Development

Phil Lipsky
Sally Rosenberg
Michael Pugliese

TEAM GBA CORP. 35 Lace Lane, Westbury, New York 11590

GBA

Con
fid

en
tia

l

TM

Learn Grow Have Fun Succeed!

TEAM GBA CORP. 35 Lace Lane, Westbury, New York 11590

Video Game Design and Development, Level 2
written by Phil Lipsky

Curriculum Development
Phil Lipsky

Production Editor
Sally Brecher Rosenberg

Production Assistants
Stacey Rosenberg,
Temma Clark-Braverman

Box/Binder Design
Michael Pugliese

Game Art
Michael Pugliese

Marketing and Sales
Walter Ebe
John Taylor

COPYRIGHT © 2008
TEAM GBA CORP.

Printed in the United States
of America.

For more information,
contact Game Builders
Academy, 35 Lace Lane,
Westbury, New York, 11590.

Or find us on the World
Wide Web at
www.gbalearning.com.

All rights reserved. No part
of this work covered by the
copyright hereon may be
reproduced or used in any
form or by any means --
graphic, electronic, or
mechanical, including
photocopying, recording,
taping, Web distribution, or
information storage and
retrieval systems -- without
the expressed, written
consent of the publisher.

For permission to use
material from the text or
the Curriculum-In-A-Box
product, submit a request
online at:
info@gbalearning.com.

Disclaimer.
Game Builders Academy
reserves the right to revise
this publication and make
changes from time to time
in its content without
notice.

ISBN-13:
978-0-9815502-1-3

GBA

Con
fid

en
tia

l

Enjoy this wonderful journey with your students - and let us know about

your successes!

All materials Copyright©2008 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

WELCOME TO THIS EXCITING TEACHING TOOL

I

COURSE OVERVIEW

This course is designed to guide you and your students through the process of

building a full, working video game. Along the way, there are many opportunities for

students to apply, practice, and reinforce various academic subjects they’ve learned

or are learning in school.

In this course, your students will use and strengthen their math skills, logic skills,

communication skills, concentration and critical thinking skills, problem solving and

creative thinking – all in the context of learning how to design and program their

own video game. Your students will be introduced to the technical and artistic con-

cepts and techniques of designing and building a video game. Students will create

some of their own art for their games. Students will also be introduced to the funda-

mentals of animation for use in their games.

Students will use the free version of Game Maker software to create their games.

Game Maker is a software (program) that enables the user to create video games in

either a full click-button (click-and-drag) environment, or fully by writing program-

ming code, or using a combination of both. In this Level 2 course, most of the game

development will be done using hand-written programming code.

GBA

Con
fid

en
tia

l

HOW TO USE THIS MANUAL

This manual is designed to guide you and your students through the process of

building a full, working video game. Along the way there will be many opportunities

for discussion about various academic subjects, creative and artistic ideas, and

much more.

The project is divided into lessons, each consisting of a number of modules. The

modules are designed to be, as the name implies, modular. Many of them can be

done in different sequence or on their own for variations on the given project. But

we highly recommend that you follow the sequence of lessons and modules in as

laid out in this manual. The order of modules has been carefully designed to build

sequentially to the finished project, and to build students’ knowledge, skills, and con-

fidence with each successive module.

Each module includes the detailed procedure(s), in a clear, numbered, step-by-step

organization. Indented and offset within each module are questions to ask students

(along with answers), additional explanations and clarifications on given steps, ideas

for having students reinforce material or experiment with skills newly gained in the

given module (or step), and more. We highly recommend that you incorporate as

much of this material as possible.

Throughout the manual, there are also many sidebars on the right-hand side of the

pages. These contain additional information, ideas for variations on the given mod-

ule, ideas for discussion, academic connections, important information, and more.

As with the indented material in the body of the modules, we recommend that you

include as much of the sidebar material as possible for your class.

Show the sample game (OrbQuest) to your students during the first day of class so

they can see the end goal, and so they will have a clear picture and overview of the

project.

Along with the finished sample game, there is a file that accompanies each module

and shows how the game should look up to, and after, completion of the module.

These are called “postmods” for post module, or “after” module. It’s usually helpful

to show the postmod for a given module before teaching that module, but this is up

to you. You may choose to have your students fully discover the result of their work

on their own, without first seeing what the result will be.

If a student misses one or more classes, when they return, they can use the Module

start file located on the Instructor Files as their “starter” file on the day they return.

Although this is, of course, not as good as having the student’s own game to work

on that day, it at least allows the student to follow, complete, and learn the day’s

material, with a file that includes all the material that was covered on the day(s)

missed.

The postmods also serve as reference for you and for your students as to exactly

how the file is set up. So, as a teacher, you have each module on paper, with the

steps - and you also have the specific postmod file that goes with that module to

show exactly how the file looks with all the steps in the module completed.

Take the opportunities for academic discussions as far and as deep as you like, or

not at all, as you see best for your class and the given day, students’ responses,

classroom situation, etc. Enjoy this wonderful journey with your students - and

let us know about your teaching successes and students’ accomplishments!

All materials Copyright©2008 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

II

GBA

Con
fid

en
tia

l

WHAT’S ON THE INCLUDED DISKS

INSTRUCTOR FILES DISK

Link to Game Builders Academy Web site: http://www.gbalearning.com

Link to Game Maker, Audacity, Daz downloads:

http://www.gbalearning.com/gamedevresources.html

Student Starter File: This is the starter file for Module1. The emphasis in

this course is on programming, so this file provides the basic sprites,

objects, rooms, sounds, and backgrounds necessary to begin the game

creation process.

Post Modules Files: There is a file that accompanies each Module and

shows how the game should look up to, and after, the completion of each

module. Also included is an executable file of how the game will look at the

completion of each lesson.

You can also use these files if a student misses one or more classes. When

the student returns, use any PostMod file as a “starter” file on the day they

return.

Student Tutorials: PDF’s of each Student Tutorial Module.

Code Documents: Word documents of all object code used in game cre-

ation. Simply copy and paste pieces of code, or an object’s code in its

entirety. Helps eliminates typos!

Enhanced Games: Two enhanced games are provided to show you some

idea of how students may change and embellish their games with a variety

of enhancements discussed in Module 24.

Design Document: This 2-page form sets the student mind working. The

students create the design document for a game they would like to create.

STUDENT FILES DISK

Link to Game Builders Academy Web site: http://www.gbalearning.com

Link to Game Maker, Audacity, Daz downloads:

http://www.gbalearning.com/gamedevresources.html

Puggy Sprites: This file contains a number of different sprites that students

may load into their games. They were created by Game Builders Academy

Master Artist Michael Pugliese. Students may use them Royalty Free.

Backgrounds: For students who wish to concentrate on game design

rather than game art, we have included backgrounds that may serve as a

Game Intro, Game Win, and Game Lose screens. There are also a variety

of other backgrounds the students may wish to import or edit.

Game Art Appendix: All the artwork shown in Appendix III: Art and

Animation for Games. After class discussions, students may want the

images to repeat the effects discussed.

All materials Copyright©2008 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

III

GBA

Con
fid

en
tia

l

.

GBA

Con
fid

en
tia

l

PRELIMINARIES

Course Overview .I

How to Use this Manual .II

What’s on the Included Disks .III

PROJECT 1: ORBQUEST

Project Overview .9

Lesson I: Modules 1-4

Lesson 1 Overview . 11

1. Open and Save Starter File .12

2. Program Creation of Ground and Player .13

3. Program Player Left and Right Movement using Parallax Scrolling 15

4. Program Functionality for Player to Jump and Land .17

Lesson II: Modules 5-9

Lesson 2 Overview .21

5. Program Standing Adversaries .22

6. Program Creation and Movement of Player Projectiles25

7. Handle Collision Between Player Projectile and Adversary28

8. Program Creation and Display of Player Score .29

9. Program Player’s Scoring Functionality and Add Sound 31

Lesson III: Modules 10-15

Lesson 3 Overview . 32

10. Program Walking Adversaries .33

11. Program Player Sprite Animation .35

12. Program Creation and Functionality of Pickup Objects 38

13. Program Transition from Level 1 to Level 2 .40

13. Program Flying Adversaries .41

15. Program Functionality for Adversary to Throw Projectiles43

Lesson IV: Modules 16-20

Lesson 4 Overview . 47

16. Create and Display Player Healthbar .48

17. Program Player Healthbar Functionality .49

18. Program Game Over Functionality .51

19. Program Game Replay Button Functionality .52

20. Program Game Start Functionality .54

All materials Copyright©2008 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

TEACHER’S MANUAL TABLE OF CONTENTS

V

continued on following page

GBA

Con
fid

en
tia

l

.

GBA

Con
fid

en
tia

l

Lesson V: Modules 21-24

Lesson 5 Overview . 57

21. Program Pitfalls (Ground Gaps) .58

22. Program Platforms .60

23. Program Ladders .69

24. Game Enhancements .71

APPENDIXES

Appendixes Overview: .73

Appendix I: Programming Primer .75

Appendix II: Math for Games .79

Appendix III: Art and Animation for Games .81

Appendix IV: Gameplay Design .91

Appendix V: Ethical and Social Issues to Consider When Teaching

Game Development to Young Students .95

Video Game Glossary (so you can speak your students’ language)97

OBJECT CODE

Controller Object .103

Player Object .111

Egg Object .113

Fireball Object .114

Replaybutton-Playbutton Objects .115

All materials Copyright©2008 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

TEACHER’S MANUAL TABLE OF CONTENTS

VII

Continued from previous page

GBA

Con
fid

en
tia

l

9

The game that students will create is referred to as a 2-dimensional side-scrolling,

platform game. Games such as Super Mario Bros and Sonic the Hedgehog are

among the most famous side-scroller games.

Side-scrolling platform games typically involve a character that moves from left to

right, jumping over gaps and onto various platforms, climbing ladders, and defeating

adversaries. Side-scrolling platform games almost always feature a cartoonish hero.

While these games can use 2D or 3D graphics (or both), the action occurs in a two-

dimensional plane.

Students’ games will have three or more levels (depending on time available and

students’ own game design choices). The game will be complete with a Game Start,

Game Over, and Game Win screen, fully developed art, and gameplay functionality.

In different levels of the game, the player will be located inside or outside a castle

and will be faced with challenging adversaries that will chase the player. When

adversaries touch the player, or the adversary projectiles touch the player, the play-

er’s health will be reduced. When the player’s health is fully depleted, the game

ends. The player will be able to throw (food) projectiles at the adversaries to make

them disappear. The player will have a number of objects to collect during his

journey and transverse pitfalls, platforms, and ladders.

Students will be able, time permitting, to add additional programmed features, art,

sound, and animation effects. At the end of the course, students will create an “exe-

cutable” file of their game. This is a true PC gaming format file, which can then be

played on any PC, with or without Game Maker being installed. Students can also

post their games on the web or send them via email for friends and families to see

and play.

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 1 • Teacher’s Manual

9

PROJECT 1 OVERVIEW: ORBQUEST

GBA

Con
fid

en
tia

l

Modules 1-4

Lesson 1 Overview . 11

Open and Save Starter File . 12

Program Creation of Ground and Player . 13

Program Player Left and Right Movement using Parallax Scrolling 15

Program Functionality for Player to Jump and Land .17

LESSON 1 OVERVIEW

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

11

GBA

Con
fid

en
tia

l

12

OVERVIEW:
In this Module, students will: Open the OrbQuest Starter File and

familiarize themselves with the contents of the Library.

INTRODUCTORY DISCUSSION:
Students already familiar with sprite, object, and room creation are given an

OrbQuest starter file containing a rather robust Library containing all the resources

necessary to create a 2-dimensional side-scrolling platform game.

Note: The starter file contains all the sprites, objects, rooms, backgrounds, and

sounds that are needed in order to make a complete game. Also included are

layered backgrounds set into various rooms and different sounds which will

greatly enhance the students’ games. As with the games created using Game

Builders Academy’s Video Game Design and Development: Level 1

Curriculum-In-A-Box, supplied Library resources can always be edited or new

resources may be added in order to make the students’ games individually

personalized.

STEPS:

1. Navigate to the Student Files disk and open OrbQuest_Starter.gmk.

2. Using the File menu, left-click on Save As.

3. In the Save the Game window, navigate to your designated folder and name

your file your-name1, replacing “your-name” with your first and last name.

4. Open the folders in the Library and examine their contents.

Note on Modules: In Video Game Design and Development: Level 2,

students will be doing actual hand-coding of their games, as opposed to the

click-and-build method in the earlier introductory course. This increases the

difficulty of the course of study, but also increases the options available to the

students, and the rewards that come from mastering difficult challenges.

To help identify and navigate the coding in later Modules, programming code

added to existing code will appear as black text, while previously scripted code

will appear as grey text. This convention only appears in the written Modules

and will not appear in the Post-Modules or Starter File code windows.

END

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 1: Open and Save OrbQuest Starter File

12

4. Examine OrbQuest_Starter Library contents.

GBA

Con
fid

en
tia

l

OVERVIEW:
In this Module, students will: Program creation of an instance of the

player object; Program creation of an instance of the ground object.

INTRODUCTORY DISCUSSION:
In Video Game Design and Development: Level 1, we added objects

to the room (level) directly. Although this is quick and easy, it ultimately limits what

can be done. Many new possibilities open up when we begin programming the actu-

al creation of objects (instances). In this Module, we will create an instance of the

player and an instance of the ground via programming.

Brief Review - Use of Pseudocode: Remind students that pseudocode is used by

the developers of all the games they play at home. Before trying to program something

to happen in a game (or other type of computer program), it’s helpful to think through

the programming steps using a spoken language (English, Spanish, Chinese, etc.).

Once the programming steps have been defined in plain language, then those steps

are translated into programming code. There is no “right” pseudocode. Its only purpose

is to clearly think through and define the steps in the programming task at hand.

STEPS:

Prep: Place controller object in level1 room.

1. In the Library, double-click the controller object (this will bring up the controller

Object Properties window).

Have students: Try to pseudocode the ground creation functionality.

Tell students there is no “right” pseudocode - pseudocode is just words

that describe how to accomplish a programming task.

Example of pseudocode for this particular task:

When the first level starts, the ground is created.

Ask students: Now that we’ve got the pseudocode, we take the first part,

“When the first level starts” - do we have that event already in our program-

ming? answer: no. We will add it. For now we will use the Room Start Event.

2. In the Object Properties window, left-click the Add Event button (this will bring

up the Event Selector window).

3. In the Event Selector window, left-click the Other button, then select Room Start

from the flyout menu.

4. On the right side of the Object Properties window, in the Actions panel, left-click

the control tab, then right-click the Execute Code icon (this will bring up a blank

Code window).

5. In the blank code window, type the following code:

//CONTROLLER

//room start

//creation of ground

instance_create(

Tell students: Look in the bottom portion of the code window and you’ll see

the code reference area. As soon as you start to type code Game Maker shows

you the available functions based on what you typed. The reference window

also shows you whether or not the function takes arguments and if so what

arguments it takes. For more information,

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 2: Program Creation of Ground and Player

13

FUNCTIONS

A function is a block of code that does

something. Game Maker has many

built-in functions. We can use built-in

functions or we can write our own custom

functions. In this Module will use one

of the fundamental built-in functions in

Game Maker -- the instance_create

function.

Sometimes a function needs additional

information to do its work, sometimes it

does not. If the function needs additional

information, the information goes inside

of parentheses immediately following the

function name. If the function does not

need additional information, the paren-

theses are still written, but nothing is

inside. The information inside of the

parenthesis is referred to, in program-

ming, as arguments. This will become

very easy to understand as we work

more with functions.

Examples:
do_something(argument or arguments);

do_something_else();

paintsomething(color,thingtopaint);

instance_create(x,y,object);

Note:
A semi-colon is written at the end of every

function, after the close parentheses:

instance_create(x,y,obj);

For more information, refer to Appendix I:

Programming Primer.

continued on following page

5,6. Type directly in the code window, note

reference in bottom of window

GBA

Con
fid

en
tia

l

refer to sidebar on previous page, “Functions”).

Ask students: Notice that the instance_create function has

three things inside the parentheses. What are those things

inside the parentheses? answers: information the function

needs to do its work; arguments.

Ask students: What do you think those three specific things are. Think

about the function name itself, instance_create, what does it do and what

additional information might it need to do its work? answer: an x-position

for the object, a y-position for the object, and the name of the object itself.

6. Type the remainder of the line of code as below:

instance_create(0,500,ground);

Explanation of code:

Create an instance of the ground at an x-position of 0 and a y-position of 500.

7. Test game and debug as necessary (ground object is set to not Visible in Object

Properties window).

Have students: Try to pseudocode the player creation functionality.

Example of pseudocode for this particular task:

When the first level starts, the player is created.

Ask students: Now that we’ve got the pseudocode, we take the first part,

“When the first level starts” - do we have that event already in our program-

ming? answer: yes (the Room Start Event added in step 3).

8. In the Object Properties window, left-click the existing Room Start event.

9. On the right side of the Object Properties window, in the Actions list, double-click

the existing execute a piece of code icon (this will bring up the code window).

10. In the existing code window, add the following code:

//CONTROLLER

//room start

//creation of ground

instance_create(0,500,ground);

//creation of player
instance_create(room_width/2,ground.y,player);

Explanation of code:

Create an instance of the player at an x-position in the horizontal center of the

room and a y-position at the base of the ground.

Explain to students: Since we set the position of the ground in step 6, we can

now use the ground itself to position other items in relation to the ground.

11. Test game and debug as necessary (player should appear in game window).

Explain to students: The Room Start event runs at the beginning of each

and every room. We will use an “if” statement to associate these actions

only with the first level of the game (see sidebar at right, “If Statement”).

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 2: Continued from previous page

14

ROOM_WIDTH/2

In step 10 of this Module, we use

room_width/2 to specify an x-position for

the player. As arguments in a function,

we can use numbers, and we can also

use formulas. The formula room_width/2

yields a number that is the horizontal

center of the room. Students will use this

technique frequently throughout this

course.

GRAPH ORIGIN IN PROGRAMMING

In mathematics, the origin (0,0) of a grid

(or graph) is in the center. In programming,

the origin is in the upper left corner of a

grid (or graph, or game window area).

IF STATEMENT

An “if” statement is the first conditional

statement students will learn and use.

Conditional statements enable a program

to take actions based on certain condi-

tions. The “if” statement is the most fun-

damental conditional and it works the

same as human decision-making. For

example: “If it is raining, I will take an

umbrella”. Or “If I am hungry, I will eat.”

Students will use the “if” statement exten-

sively in this course. For more informa-

tion, refer to Appendix I: Programming

Primer.

continued on following page

GBA

Con
fid

en
tia

l

12. In the existing code window, add the following code:

//level1 room
if(room == level1)
{

//creation of ground
instance_create(0,500,ground);

//creation of player
instance_create(room_width/2, ground.y, player);

}
Explanation of code:

If the current room is level1, execute the code within the curly braces.

13. Test game and debug as necessary (everything should work exactly as it did after step 10, the

room check we just added will serve us later in the project).

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 2: Continued from previous page

15

END

PERSISTENT OBJECT, OR

RE-CREATE OBJECT IN

EACH ROOM?

There are two primary ways to make an

object appear in more than one room

(game level). You can set the object to

be “Persistent” by clicking the Persistent

checkbox in the given object’s properties

window, or you can use a room check (if

statement, as in step 12 of this Module)

to create the object each time a room is

created. Each method has its own uses.

We will specify which method to use

within the steps of the various Modules.

GBA

Con
fid

en
tia

l

OVERVIEW:
In this Module, students will: Program functionality to make it appear

that the player is moving either right or left when the corresponding

arrow key is pressed on the keyboard.

INTRODUCTORY DISCUSSION:
In a side scrolling game, the player itself can move left or right, or the background(s)

can move as the player stays in one position. If the background moves to the left the

optical illusion is that the player is moving to the right and vice versa. For level 1 of

this game, we will have the player always remain in the middle of the room as the

background moves left or right creating the optical illusion of the player moving. This

technique offers advantages that we will see as we move forward. We will start by

creating simple movement, then starting step 8, we will introduce the parallax effect.

STEPS:

1. In the Library, double-click the controller object (this will bring up the controller

Object Properties window).

Have students: Try to pseudocode the player (background) movement func-

tionality. (Note: We will use the arrow keys for left and right movement.)

Example of pseudocode for this particular task:

When the right arrow key is pressed, the background(s) moves to the left.

Ask students: Now that we’ve got the pseudocode, we take the first part,

“When the right arrow key is pressed” - do we have that event already in

our programming? answer: no. (So we have to add it.)

2. In the Object Properties window, left-click the Add Event button (this will bring

up the Event Selector window).

3. In the Event Selector window, left-click the Keyboard button (this will bring up

the Keyboard events menu).

4. In the Keyboard events menu, choose <Right> (this is the event that occurs

when the right arrow key is pressed on the keyboard).

5. On the right side of the Object Properties window, in the Actions panel, left-click the con-

trol tab, then right-click the Execute Code icon (this will bring up a blank code window).

Tell students: To make it appear that the player is moving, we move the

background(s) in the opposite direction.

Ask students: To make it appear that the player is moving right when the

right arrow key is pressed, what do we have to do? answer: move the

background(s) to the left.

6. In the blank code window, type the following code to move all backgrounds at

the same speed:

//CONTROLLER
//keyboard right
//moving the backgrounds
background_x[0] -= 3;
background_x[1] -= 3;
background_x[2] -= 3;

Explanation of code: Move all backgrounds to the left 3 units.

7. Test game and debug as necessary (press

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 3: Program Player Left and Right Movement using
Parallax Scrolling

16

continued on following page

TOP-SCROLLERS SAME

PRINCIPLE AS SIDE-SCROLLERS

In this game project, we create side-

scrolling motion. The same exact princi-

ples and techniques can be used to cre-

ate a “top-scroller.” A top-scroller is a

game in which the motion is vertical as

opposed to horizontal. Examples of top-

scrollers are overhead view two-dimen-

sional driving games, and many older

“space” games. The original arcade ver-

sion of a driving game called Spy Hunter

is a prime example of a top-scroller.

The only technical difference is that

instead of the primary movement being

programmed along the x-axis, primary

movement is programmed along the y-

axis. And, of course, backgrounds and

other graphics need to be designed to tile

and scroll vertically.

PARALLAX SCROLLING

Parallax scrolling is the technique (or prin-

ciple) of moving different backgrounds at

different speeds in relation to the viewer.

The further away from the viewer a back-

ground is (or should appear) the slower it

moves. Or, conversely, the closer a

background (or object) is to the viewer,

the faster it moves.

This is the optical illusion that humans

percieve and that adds to the sense of

depth in human vision. To simulate this

real-world optical illusion on a two-dimen-

sional computer screen (in a game), we

program the backgrounds to move at dif-

ferent speeds. Backgrounds (and objects)

closest to the viewer move fastest.

GBA

Con
fid

en
tia

l

Right arrow key, backgrounds should move to the left, creating

the illusion that the player is moving to the right).

Remind students: We’re about to try something new — what

do we expect to happen? Expect it not to work. If it works ...

that’s gravy.

Have students: Notice that although the player stays in the middle of the

screen, the optical illusion is starting to take effect - it appears as if the play-

er is moving, even though it’s the backgrounds that are moving. We will

enhance this illusion by adding a parallax effect (see sidebar page 16,

“Parallax Scrolling”) to enhance the illusion of depth (three-dimensionality).

8. Bring up the code window from step 6, and change the code as below:

background_x[0] -= .75;
background_x[1] -= 2;
background_x[2] -= 3;

9. Test game and debug as necessary (press Right arrow key, backgrounds

should move at different speeds creating illusion of depth along with player

movement to the right).

Remind students: We’re about to try something new — what do we expect

to happen? Expect it not to work. If it works ... that’s gravy.

10. In the conroller Object Properties window, right-click on Keyboard Event for

<Right> Key, and left-click on Duplicate Event.

11. In the Event Selector window, choose Keyboard <Left>.

12. In the Actions panel, double-click on Execute a piece of code action and make

the following changes:

//CONTROLLER
//keyboard left
//moving the backgrounds
background_x[0] += .75;
background_x[1] += 2;
background_x[2] += 3;

13. Test game and debug as necessary (press Left arrow key, backgrounds should move at

different speeds creating illusion of depth along with player movement to the left).

Have students: Notice that player does not face left when moving left. One

very easy way to fix that is to flip the image horizontally when we change

directions. To do this, we set the image’s xscale (see next step, and sidebar

at right, “Flipping Horizontal and Vertical with xscale and yscale”).

14. Bring up the code from step 6, and add the following to the existing code:

//player sprite direction
with (player) image_xscale = 1;

15. Bring up the code from step 12, and add the following to the existing code:

//player sprite direction
with (player) image_xscale = -1;

16. Test game and debug as necessary (press Left and Right arrow keys, player

should appear to move realistically, facing in the direction of movement).

END

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 3: Continued from previous page

17

PLAYER SPEED IS CURRENTLY

HARD-CODED AS 3, USING A

VARIABLE OFFERS MORE

FLEXIBILITY

In this game project, the player’s horizon-

tal movement speed is always the same -

a constant speed of 3 units. In program-

ming, when a number is used as a

parameter or property instead of a vari-

able being used, it’s referred to as “hard-

coding.” Hard coding is easier, but it has

limitations.

Since the player’s speed is hard-coded, it

cannot be changed while the game is

running. This means that the player can-

not get faster or slower due to conditions

(moving through mud, getting tired, run-

ning fast, etc.).

For the player’s speed to be able to

change during gameplay, the player’s

speed (currently 3) would have to be pro-

grammed (created and referenced) as a

variable. For more information, refer to

Appendix I: Programming Primer.

FLIPPING HORIZONTAL OR

VERTICAL BY REVERSING

X-SCALE OR Y-SCALE

In any programming language that han-

dles graphics, you can easily flip an

image along it horizontal or vertical axis

to give a “mirror” image. This is the tech-

nique we use in steps 14 and 15 of this

Module.

To flip an image along either axis, set the

scale along the given axis to 100% or

negative 100%.

Each programming language will have its

own specific code for the x-scaling and y-

scaling. In Game Maker, 1 is 100% and

negative 1 is negative 100%. Those are

the numbers you see in steps 14 and 15.

GBA

Con
fid

en
tia

l

OVERVIEW:

In this Module, students will: Program functionality to create a player projec-

tile, and for the player to throw projectiles in a specific direction (using

angles).

INTRODUCTORY DISCUSSION:

Tell students: We will now program functionality for the player to throw pro-

jectiles at the adversaries.

Ask students: Who decides which key on the keyboard the player will press

to throw the projectile? answer: we do, because we are the programmers.

Ask students: In PC games, what key is most commonly used to throw

projectiles?” answer: spacebar (students can program a different key if they

prefer).

STEPS:

1. In the Library, double-click the controller object (this will bring up the Object

Properties window for the controller).

Have students: Try to pseudocode the creation of the player projectile.

Example of pseudocode for this particular task:

When the Spacebar is pressed, a player projectile is created.

Ask students: Now that we’ve got the pseudocode, we take the first part,

“When the Spacebar is pressed” - do we have that event already in our pro-

gramming? answer: no (so we have to add it).

2. In the Object Properties window, left-click the Add Event button (this will bring

up the Event Selector).

Ask Students: What Event do you think we choose in this case? answer:
Key Press (Keyboard can also be used - see sidebar, page 18, “Keyboard

or Key Press”).

3 In the Event Selector, left-click the Key Press button (this will bring up the Key

Press events menu).

4. In the Key Press events menu, choose <Spacebar> (this is the event that

occurs when the Spacebar is pressed). The <Spacebar> event should now

appear in the controller object Events list.

5. On the right side of the Object Properties window, in the Actions panel, left-click

the control tab, then right-click the Execute Code icon (this will bring up a blank

code window).

6. In the blank code window, type the following code:

//CONTROLLER
//keypress space
//creation of egg
instance_create(player.x,player.y-15,egg);

Explanation of code:

Create an instance of the projectile (egg) object, set the x-position at play-

er.x (horizontal center of player), set the y- position at 15 units above the

bottom of the player (player.y-15).

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 6: Program Creation and Movement of Player
Projectiles

25

continued on following page

THERE’S A LOT HERE

This particular Module comprises a number

of fundamental academic and social subject

areas. At it’s fullest, this Module includes: a

primary application of math via use of

angles to determine direction; an introduc-

tion to basic physics via creating projectiles

with motion; a fundamental discussion

about ethics when dealing with adversaries

(in a game and in the real world).

OPPORTUNITY FOR

ETHICS DISCUSSION

In building this game, there is one main

rule: We can stop an adversary but we

cannot harm an adversary. How can we

do this? This will yield many interesting

answers, will serve as a fun and engag-

ing discussion with the students, and will

also get students on track in terms of

how to apply this rule (can stop adver-

sary but cannot harm adversary) in their

game development.

After this discussion, tell students that for

these first projectiles, we will throw food

at the attacking adversaries. The logic is

that animals, both real and fictitious, i.e.

dragons, monsters, etc. like food, so we

throw food at them (thus feeding them),

and that “stops the adversaries without

harming the adversaries.”

GBA

Con
fid

en
tia

l

7. Test Game and debug as needed (press Spacebar, projectile

should be created at the player’s position).

Have students: Notice that the projectile is created, but does

not move. Ask students: Why doesn’t the projectile move?

answer: we haven't programmed it yet. (We’ll program the

motion event in the next steps.)

Have students: Try to pseudocode the projectile movement functionality.

Remind students there is no “right” pseudocode - pseudocode is just words

that describe how to accomplish a programming task.

Example of pseudocode for this particular task:

When the projectile is first created, set it in motion.

Ask students: Now that we’ve got the pseudocode, we take the first part,

“When the projectile is first created” - do we have that event already in our

programming? answer: yes, it’s on the code for the Key Press <Spacebar>

event (steps 4-6). So we find that event and add code to set the projectile in

motion.

Tell students: There are numerous ways to program motion. For now we

will use a simple, built-in function.

8. In the Object Properties window, left-click the existing Key Press <Spacebar> event.

9. On the right side of the Object Properties window, in the Actions list, double-

click the existing Execute Code icon (this will bring up the code window).

10. In the existing code window, add the following code on a new line, below the

code from step 6:

//making egg move
with (egg) motion_set(0,15);

Explanation of code:

Set the projectile motion with a direction of 0 (right), and a speed of 15 (see

sidebar at right, “Angles and Direction”).

11. Test Game and debug as needed (press Spacebar, projectile should be created

and immediately set in motion).

Have students: Notice that the projectiles always go to the right, even if the

player is facing left. We will fix this in the next step, using an “if” statement.

12. Bring up the code from step 10, and modify the code as below:

//check player direction is right
if (player.image_xscale == 1)
{

//creation of egg
instance_create(player.x,player.y-15,egg);
//making egg move
with (egg) motion_set(0,15);

}

//check player direction is left
if (player.image_xscale == -1)
{

//creation of egg

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 6: Continued from previous page

26

ANGLES AND DIRECTION

In Game Maker and other programming

environments, direction is based on the

angles within a full 360 degree circle. Right

is indicated by 0 degrees (360 will work in

many programming environments, but in

Game Maker, only 0 degrees can be used

to specify right as a direction). Left is indi-

cated by 180 degrees; up is indicated by 90

degrees; Down is indicated by 270 degrees.

All incremental angles between 0 and 359

are usable - this allows very fine control of

direction of motion in game programming.

OTHER WAYS TO INDICATE DIRECTION

In computer programming, there are two

primary ways to specify direction: Degrees

(based on angles) and Radians. Radians

are more commonly used in higher-end pro-

gramming and other mathematical and sci-

entific application. But for purposes of class

discussion and gameplay design, discuss

with students the numerous other ways to

indicate direction, such as: Compass direc-

tions (N,S,E,W); clock directions (6 o’clock

to indicate behind, 12 to indicate in front, 9

to indicate right, etc.); longitude and latitude;

most basic - left, right, up, down. There are

other ways to indicate direction, but these

examples should provide good jump-off

points for class discussion.

0o

right
90o

up

45o

diagonal

180o

left
270o

down

continued on following page

GBA

Con
fid

en
tia

l

instance_create(player.x,player.y-15,egg);
//making egg move
with(egg) motion_set(180,15);

}

Explanation of code:

If the player is facing right (image_xscale == 1), create a projectile and set

the motion with a direction of 0 (right), and a speed of 15; If the player is

facing left (image_xscale == -1), create a projectile and set the motion with

a direction of 180 (left), and a speed of 15.

13. Test Game and debug as needed (press Spacebar, projectile should be created

and immediately set in motion, change direction, press Spacebar again to throw

projectiles in other direction).

Have students: Notice that projectiles that have already been thrown (and are

traveling across the screen) actually change direction in mid-air if the player

changes direction. This is because the “with (egg)” construction, controls all

instances of the egg. One solution is to give each instance a new name as it’s

created. The code in the next steps affect each instance of the egg individually,

as opposed to affecting all instances in the same manner (see sidebar at right,

“The Difference Between Objects and Instances of Objects”).

14. Bring up the code from step 12, and modify the code as below:

//check player direction is right
if (player.image_xscale == 1)
{

//creation of egg
newegg = instance_create(player.x,player.y-15,egg);
//making egg move
with (newegg) motion_set(0,15);

}

//check player direction is left
if (player.image_xscale == -1)
{

//creation of egg
newegg = instance_create(player.x,player.y-15,egg);
//making egg move
with (newegg) motion_set(180,15);

}
Explanation of code:

Same explanation as code in step 12, with one significant difference: each

time a new instance is created, it is named “newegg” - then in the with con-

struction, the newegg is specified instead of the “egg” as in the code in step

12.

15. Test Game and debug as needed (move the player in both directions, throwing

projectiles as you move, also try jumping and pressing the Spacebar to throw

projectiles in mid-air).

16. Optional (and fun): Have students try to program projectiles to be thrown in all

four straight directions: up, down, left, right (have students use W,A,S,D keys on

keyboard). The respective directions (in degrees) for up, down, left, and right

are 90, 270, 180, 0.

END

All materials Copyright©2010 Game Builders Academy™. Materials can not be reprinted, reproduced,

or digitally stored in any way, without the expressed, written consent of Game Builders Academy™.

Game Builders Academy™ • Curriculum-in-a-Box™ Video Game Development Level 2 • Teacher’s Manual

Module 6: Continued from previous page

27

THE DIFFERENCE BETWEEN

OBJECTS AND INSTANCES

OF OBJECTS

An object is an item in the library, in the

Objects folder. Objects never actually

appear in a game. What appears in games

are instances of objects (notice the name

of the function: instance_create). An

analogy is this: Think about a photocopy

machine. The Object is the original docu-

ment, and the instances are the photo-

copies of the original document.

This comes into play in steps 12 and 14

of this Module. In step 12, we use the

object name (egg) to program the move-

ment. This is why when one instance of

the egg moves in a certain direction, all

instances move in the same direction.

We solve this problem in step 14. To

enable each instance of the egg object to

have its own individual behavior, we

name each new instance as it’s created

(newegg), and then we use the new

instance name, instead of the object

name. Refer to step 14 to see the

revised code.

ONE EQUAL SIGN SETS

A VALUE, TWO EQUAL SIGNS

CHECKS A VALUE

In the if statement in step 14 (and other if

statements), we use two equal signs (==) to

check the value of the player.image_xscale.

Then in the first statement within the curly

braces, we use one single equals sign (=)

to set the new instance name to “newegg.”

This is the basic difference:

One equal sign sets a value.

Two equal signs checks a value.

Even experienced programmers, in the

haste of writing code, often use the wrong

number of equal signs in a given line of

code. With experience, this is an error that

students will learn to find and fix quickly.

But in early stages of learning to program,

this type of error, in particular, is common.

GBA

Con
fid

en
tia

l

